

MEMS Industry Group Presents

Concurrent Design to Achieve High Performance and Low Cost: Case Study of a MEMS Automotive Pressure Sensor Design

Presented by David DiPaola, Managing Director, DiPaola Consulting

Moderated by Rob O'Reilly, Senior Member Technical Staff, Analog Devices

MEMS Industry Group (MIG) Introduction

Over 130 members and partners – from start-ups to Fortune 500 companies MIG members ARE the MEMS supply chain.

MIG Mission

MEMS Industry Group is the trade association advancing MEMS across global markets

What We Do

Educate the Marketplace

- Explain why MEMS is important and how it's being used
- MEMS in the Machine

Encourage Information-sharing

- Steering Committees, Industry News, PR Opportunities, MEMSblog, Twitter, LinkedIn, YouTube and newsletter
- MEMS Marketplace, one-stop matchmaking portal for MEMS supply chain and their customers
- Collaborative Projects MEMS Foundry Engagement Guide

Share Resources

- White Papers, Industry Data, Presentations
- Membership Directory

- Introductions
- Webinars, workshops and networking

Upcoming MIG Events

- MEMS Education Series Webinars
 - January 17 Improving Performance of New MEMS Designs: An Insider's Look at imec's SiGe above-IC MEMS Technology Platform
 - February 16 MEMS Reliability Case Study
 - February 23 MEMS Product Life Cycle

MEMS TechZone & Conference Session at CES 2012

• January 10–13, 2012 – Las Vegas

MEMS Executive Congress - Europe and US

March 20, 2012 - Zurich, Switzerland November 7-8, 2012 - Scottsdale, AZ

Learn today. Design tomorrow.

evecublue congres

International

- > Sensors in Design ESC Silicon Valley
 - March 28-29, 2012 San Jose, CA

& conference

- M2M Forum MEMS New Product Development
 - May 8-9, 2012 Pittsburgh, PA
- Sensors Expo Chicago
 - June 4–6, 2012 Rosemont Convention Center

Today's Speakers

Moderator

 Rob O'Reilly, Senior Member Technical Staff, Analog Devices

Presenter

 David DiPaola, Managing Director, DiPaola Consulting

Innovation Has Driven 45+ Years of Real-World Signal Processing Leadership

ANALOG DEVICES

ADI Inertial Technology + ADI Signal Processing Strength = Optimal Solutions to High performance Applications

THEN

Analog Devices Confidential Information

Concurrent Design to Achieve High Performance and Low Cost: Case Study of a MEMS Automotive Pressure Sensor Design

David DiPaola, Managing Director www.dceams.com

Who is DiPaola Consulting?

- A company located in in Gaithersburg, MD specializing in electromechanical design and process development
 - Extensive experience in MEMS sensors
 - 3D parametric modeling, multiphysics FEA, electrical simulation, ion implantation, silicon etch, tolerance stack, design of experiments, Matlab
 - Automotive, biomedical, consumer, military and industrial applications
- Expert problem solvers with a proven history of developing and launching new products with next to zero failures
- Product technology and material selections
- Excellent relationship with prototype and production pure play foundries
 - MEMS prototype, foundry selection, production part approval process
- Measurement system analysis, metrology, full product validation capabilities

Agenda

- Problem Statement
- Sensor Specifications
- Sensor and MEMS Sense Element Designs
- Influence of Concurrent Design in Achieving Lowest Cost
- Finite Element Analysis of Design to Predict Sensor Performance
- Summary of Analysis
- Conclusions

Sensor Problem Statement

- Develop an array of pressure sensors with limited height to measure input from multiple sources in an harsh automotive environment
- Maintain high accuracy during extreme temperatures, temperature transient events and nonplanar boundary conditions
 Topic for this discussion
- Meet stringent drift requirements throughout life when exposed to vibration, thermal cycle / shock, high / cold temperature endurance, operating and proof pressure cycling
- Prevent sensor mechanical failure during burst pressure loading
- Prevent environmental ingress into the sensor package
- Support compression stack load of other system components
- Achieve low cost for high volume proliferation

MEMS Pressure Sensor Specifications

- Operating Pressure Range: 100 1500 KPa (220 PSI)
- Sensor Output: 0 5 VDC or digital interface (CAN or SPI typical)
- Operating Temperature Range: -40 to 140°C (short excursions higher)
- Proof and Burst Pressure: 2X and 3X operating respectively
- Full Scale Pressure Cycles: 10 Million
- High Temperature Endurance: 500 hrs at 140°C
- Vibration: 4g RMS for > 250 hrs
- Initial Accuracy (Total Error Band): ≤ 2% Supply Voltage
- Drift Over Life: ≤ 2% Supply Voltage
- Response Time: 1 msec

MEMS Sense Element Design

- Piezoresistive MEMS technology selected for sense element •
 - Limited height when integrated into sensor package
 - Easier to thermally isolate from package to achieve excellent temperature transient performance
 - Low cost for multiple pressure inputs
 - Piezoresistor full Wheatstone bridge and central signal conditioning ASIC for all sense elements

Membrane Wafer

MEMS Sense Element Design

- SOI wafer approach with reference cap (silicon or glass)
- Scalable to 7000 KPa or 1000 PSI
- Designed concurrently with packaging and foundry manufacturing process
- 3X cost saving from foundry over full service supplier (in high volume)

Pressure Sensor Design

Isometric View of Sensor

Pressure Sensor Design

Bottom Side

Note: O-ring gland located in customer manifold

Cross-section Views of Sensor Design

Design Approach Guided by Finite Element Analysis

- Sensor output sensitivity to mounting boundary conditions was the largest challenge in the design phase
- Boundary conditions are not ground flat to significantly reduce cost of system
- Finite element analysis used to validate design approach prior to prototype
 - COMSOL Multiphysics 4.2 was used for the finite element analysis
 - SolidWorks was used for 3D modeling
 - Sense element cap and sensor cover not included in analysis
- Two approaches considered for mounting MEMS sense element:
 - Directly on metal base plate
 - On isolation pedestal bonded to metal support plate

FEA Mesh

FEA Mesh

FEA Mesh

FEA Boundary Conditions

FEA Results of MEMS Mounted on Metal Base Plate

- Predicted sensor error due to mounting: 1.8% of Sensor Span ٠
- Correlation between theoretical and actual sensor error > 90%•

FEA Results of MEMS Mounted on Flat Plate

• Strain in MEMS adhesive up to 0.04 and will not last in thermal shock

FEA of MEMS Mounted on Isolation Pedestal

- Predicted sensor error due to mounting < 0.05% of Sensor Span
- Correlation between theoretical and actual sensor data > 90%

FEA of MEMS Mounted on Isolation Pedestal

Strain in MEMS adhesive up to < 0.0002 and will be robust to environmental testing

Summary from Finite Element Analysis

- Isolation pedestal reduced undesired membrane surface strains to a negligible level when the sensor was mounted in application and no acceptable solution was found when mounting MEMS on metal base plate
- Strain in MEMS attachment adhesive was up to 0.04 and would have resulted in failure during thermal shock without isolation pedestal, with isolation pedestal strain was lowered to 0.0002
- High correlation between theoretical and experimental results
- FEA proved to be an effective means to model the sensor to develop a robust packaging solution prior to prototype
- Upon validation of model, it was used to optimize MEMS design for lowest cost

Conclusions

- It is important in MEMS sensor integration to always be mindful of output errors due to mounting sensitivity and thermal transients
- In high volume applications, lowest cost is achieved when the sensor package, foundry processes and MEMS sense element are designed concurrently
- Finite element analysis is an effective means to predict mounting sensitivity and find solutions for mitigation prior to prototype
- With proper modeling techniques, first pass functional sensors can accelerate system development for proof of concept to end user

Questions?

MEMS in Automotive Sensor Applications

MEMS in Automotive Sensor Applications

Differential Pressure Sensor Across Diesel Particulate Filter •

MEMS in Automotive Sensor Applications

• Manifold Absolute Pressure (MAP) Sensor

