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December 13, 2011
Hosted by Karen Lightman, Managing Director, MEMS Industry Group

www.memsindustrygroup.org

Concurrent Design to Achieve High Performance and Low Cost: Case
Study of a MEMS Automotive Pressure Sensor Design

Presented by David DiPaola, Managing Director, DiPaola Consulting
Moderated by Rob O'Reilly, Senior Member Technical Staff, Analog Devices 



Over 130 members and partners - from 
start-ups to Fortune 500 companies 

MIG members ARE the MEMS supply chain.



MEMS Industry Group
is the trade association 
advancing MEMS across 

global markets 



Educate the Marketplace
‣ Explain why MEMS is important and how it’s being used
‣ MEMS in the Machine

Encourage Information-sharing
‣ Steering Committees, Industry News, PR Opportunities, 

MEMSblog, Twitter, LinkedIn, YouTube and newsletter
‣ MEMS Marketplace, one-stop matchmaking portal for MEMS 

supply chain and their customers
‣ Collaborative Projects – MEMS Foundry Engagement Guide

Share Resources
‣ White Papers, Industry Data, Presentations 
‣ Membership Directory
‣ Introductions
‣ Webinars, workshops and networking 
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 MEMS Education Series – Webinars 
• January 17 – Improving Performance of New MEMS Designs: An 

Insider’s Look at imec’s SiGe above-IC MEMS Technology Platform 
• February 16 – MEMS Reliability Case Study
• February 23 – MEMS Product Life Cycle

 MEMS TechZone & Conference Session at CES 2012
• January 10-13, 2012 - Las Vegas

 MEMS Executive Congress – Europe and US
• March 20, 2012 – Zurich, Switzerland

November 7-8, 2012 – Scottsdale, AZ

 Sensors in Design - ESC Silicon Valley
• March 28-29, 2012 – San Jose, CA

 M2M Forum – MEMS New Product Development
• May 8-9, 2012 – Pittsburgh, PA

 Sensors Expo Chicago
• June 4-6, 2012 – Rosemont Convention Center



 Moderator
◦ Rob O'Reilly, Senior Member Technical 

Staff, Analog Devices

 Presenter
◦ David DiPaola, Managing Director, DiPaola 

Consulting



8
Analog Devices Confidential Information

8



9
Analog Devices Confidential Information

ADI Inertial Technology + 
ADI Signal Processing Strength = 
Optimal Solutions to High performance Applications
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Concurrent Design to Achieve High 
Performance and Low Cost: Case Study of a 
MEMS Automotive Pressure Sensor Design

David DiPaola, Managing Director
www.dceams.com
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Who is DiPaola Consulting?
• A company located in in Gaithersburg, MD specializing in electromechanical 

design and process development
– Extensive experience in MEMS sensors
– 3D parametric modeling, multiphysics FEA, electrical simulation, ion 

implantation, silicon etch, tolerance stack, design of experiments, Matlab
– Automotive, biomedical, consumer, military and industrial applications

• Expert problem solvers with a proven history of developing and launching new 
products with next to zero failures

• Product technology and material selections

• Excellent relationship with prototype and production pure play foundries
– MEMS prototype, foundry selection, production part approval process

• Measurement system analysis, metrology, full product validation capabilities
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Agenda
• Problem Statement
• Sensor Specifications
• Sensor and MEMS Sense Element Designs
• Influence of Concurrent Design in Achieving Lowest Cost
• Finite Element Analysis of Design to Predict Sensor Performance
• Summary of Analysis
• Conclusions
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Sensor Problem Statement
• Develop an array of pressure sensors with limited height to measure input 

from multiple sources in an harsh automotive environment

• Maintain high accuracy during extreme temperatures, temperature transient 
events and nonplanar boundary conditions

• Meet stringent drift requirements throughout life when exposed to vibration, 
thermal cycle / shock, high / cold temperature endurance, operating and 
proof pressure cycling

• Prevent sensor mechanical failure during burst pressure loading

• Prevent environmental ingress into the sensor package

• Support compression stack load of other system components 

• Achieve low cost for high volume proliferation

Topic for this discussion
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MEMS Pressure Sensor Specifications
• Operating Pressure Range: 100 – 1500 KPa (220 PSI)

• Sensor Output: 0 – 5 VDC or digital interface (CAN or SPI typical)

• Operating Temperature Range: -40 to 140C (short excursions higher)

• Proof and Burst Pressure: 2X and 3X operating respectively

• Full Scale Pressure Cycles: 10 Million 

• High Temperature Endurance: 500 hrs at 140C 

• Vibration: 4g RMS for > 250 hrs

• Initial Accuracy (Total Error Band): ≤ 2% Supply Voltage 

• Drift Over Life: ≤ 2% Supply Voltage

• Response Time: 1 msec
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MEMS Sense Element Design
• Piezoresistive MEMS technology selected for sense element

– Limited height when integrated into sensor package
– Easier to thermally isolate from package to achieve excellent 

temperature transient performance
– Low cost for multiple pressure inputs
– Piezoresistor full Wheatstone bridge and central

signal conditioning ASIC for all sense elements

R1

R2

R3

R4

Vbrg

Vp Vn

Full Bridge SOI Sense Element

Membrane Wafer
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MEMS Sense Element Design 
• SOI wafer approach with reference cap (silicon or glass)
• Scalable to 7000 KPa or 1000 PSI
• Designed concurrently with packaging and foundry manufacturing process
• 3X cost saving from foundry over full service supplier (in high volume)

SOI Wafer

Cap Wafer

Handle Wafer
Membrane Wafer

DRIE Etch



13 Dec 2011 www.dceams.com 17

Pressure Sensor Design
• Isometric View of Sensor

Bushings

Metal Base Plate
Cover

Rivets
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Pressure Sensor Design
• Bottom Side

Rivets

Isolation
Pedestals

O-ring Mounting
Surface

Standoff to Set
Adhesive Height

Note: O-ring gland located in customer manifold
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Cross-section Views of Sensor Design

Isolation Pedestal

Base Plate
PCB

Cover MEMS Sense Element

Environmental Seal

Adhesives
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Design Approach Guided by Finite Element Analysis
• Sensor output sensitivity to mounting boundary conditions was the largest 

challenge in the design phase  

• Boundary conditions are not ground flat to significantly reduce cost of 
system

• Finite element analysis used to validate design approach prior to prototype
– COMSOL Multiphysics 4.2 was used for the finite element analysis
– SolidWorks was used for 3D modeling
– Sense element cap and sensor cover not included in analysis

• Two approaches considered for mounting MEMS sense element:
– Directly on metal base plate
– On isolation pedestal bonded to metal support plate 
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FEA Mesh
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FEA Mesh
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FEA Mesh
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FEA Boundary Conditions

Displaced + >0.5 mm

Displaced - >0.5 mm

Fixed

Pressure

O-ring Load



13 Dec 2011 www.dceams.com 25

FEA Results of MEMS Mounted on Metal Base Plate
• Predicted sensor error due to mounting: 1.8% of Sensor Span
• Correlation between theoretical and actual sensor error > 90%

Max
15 µstrain
on MEMS

Die Surface
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FEA Results of MEMS Mounted on Flat Plate
• Strain in MEMS adhesive up to 0.04 and will not last in thermal shock

Max
0.04 strain
In adhesive
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FEA of MEMS Mounted on Isolation Pedestal
• Predicted sensor error due to mounting < 0.05% of Sensor Span
• Correlation between theoretical and actual sensor data > 90%

Max
0.1 µstrain
on MEMS

Die Surface
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FEA of MEMS Mounted on Isolation Pedestal
• Strain in MEMS adhesive up to < 0.0002 and will be robust to environmental 

testing

Max Strain
< 0.0002

In Adhesive
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Summary from Finite Element Analysis
• Isolation pedestal reduced undesired membrane surface strains to a 

negligible level when the sensor was mounted in application and no 
acceptable solution was found when mounting MEMS on metal base plate

• Strain in MEMS attachment adhesive was up to 0.04 and would have
resulted in failure during thermal shock without isolation pedestal, with 
isolation pedestal strain was lowered to 0.0002

• High correlation between theoretical and experimental results

• FEA proved to be an effective means to model the sensor to develop a 
robust packaging solution prior to prototype

• Upon validation of model, it was used to optimize MEMS design for lowest 
cost
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Conclusions
• It is important in MEMS sensor integration to always be mindful of output 

errors due to mounting sensitivity and thermal transients

• In high volume applications, lowest cost is achieved when the sensor 
package, foundry processes and MEMS sense element are designed 
concurrently

• Finite element analysis is an effective means to predict mounting sensitivity 
and find solutions for mitigation prior to prototype

• With proper modeling techniques, first pass functional sensors can 
accelerate system development for proof of concept to end user
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Questions?
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MEMS in Automotive Sensor Applications
Brake Pressure Sensor for
Electronic Stability Control

Occupant Weight Sensor
Passenger Airbag Deactivation

Microfused
MEMS Gages

Sensor Body
Pivots as a 

Joy Stick

O-rings
Top and Bottom

Of Disc
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MEMS in Automotive Sensor Applications
• Differential Pressure Sensor Across Diesel Particulate Filter

Substrate

MEMS

Soft Adhesive

MEMS Mounted
On Ceramic

DPF
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MEMS in Automotive Sensor Applications
• Manifold Absolute Pressure (MAP) Sensor

MEMS
Integrated Chip

Glass Pedestal

Substrate

Soft
Adhesive

Connector

Electronics
Cavity

Pressure Seal

Mounting
Bushing

Vacuum 
Cavity

Plastic Housing


